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1 The Hahn-Banach Theorem

1.1 Examples of Dual Spaces

Here are examples of concrete descriptions of some dual spaces.

Example 1.1. If (X,Σ, µ) is a measure space, 1 < p < ∞, and p−1 + q−1 = 1, then the
map Lq → (Lp(µ))∗ given by g 7→ Lg is a linear isometry, where Lg(f) =

∫
X fg dµ.

Example 1.2. If (X,Σ, µ) is σ-finite, then L∞(µ) 7→ (L1(µ))∗ given by g 7→ Lg is an
isometric isomorphism, where Lg(f) =

∫
fg dµ.

Example 1.3. Let X be a locally compact Hausdorff space, and let M(X) be the set
of F-valued regular1 Borel measures on X with ‖µ‖ equalling the total variation of µ.
Then the map M(X) → C0(X)∗ given by µ 7→ Lµ is an isometric isomorphism, where
Mµ(f) =

∫
X f dµ.

1.2 The Hahn-Banach theorem

Let X be a vector space over F.

Definition 1.1. A sublinear functional on X is a function p : X → R such that

1. p(x+ y) ≤ p(x) + p(y)

2. p(αy) = αp(y) for all α ∈ [0,∞).

Example 1.4. Any seminorm is a sublinear functional.

Theorem 1.1 (Hahn-Banach). Let F = R, let M be a linear subspace of X, and let p be
a sublinear functional on X. If f : M → R is linear and f ≤ p|M , then there is a linear
F : X → R such that F |M = f and F ≤ p.

1For general locally compact spaces, “regular” can have different meanings. Take it to have the meaning
that makes this theorem work.
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Proof. Step 1: Assume dim(X/M) = 1. Then there is some x0 ∈ X such thatM+Rx0 = X.
We must find something of the form F (y + tx0) = f(y) + tα0 for some α0 ∈ R such that
F ≤ p. What must α0 satisfy? We need f(y) + tα0 ≤ p(y) + tx0) for all y ∈M, t ∈ R.

• If t > 0, divide by t to get f(y′) + α0 ≤ p(y′ + x0) for all y′ ∈ M . That is, we need
α0 ≤ infy′∈M p(y′ + x0)− f(y′).

• If t < 0, divide by −t to get f(y′)− α0 ≤ p(y′ − x0) for all y′ ∈M . That is, we need
α0 ≥ supy′∈M f(y′)− p(y′ − x0).

It remains to check that for any y′, y′′ ∈ M , f(y′′) = p(y′′ − x0) ≤ p(y′ − x0) − f(y′) (so
such an α0 exists). We can rearrange this to get f(y′ + y′′) ≤ p(t′ + x0) + p(y′′ − x0). But
this is true because

f(y + y′′) ≤ p(y′ + y′′) ≤ p(y′ + x− 0) + p(y′′ − x0)

by the subadditivity of p.
Step 2: The idea is to “iterate” Step 1 to get the general case. Let P be the collection

of pairs (N, g) where N is a linear subspace such that M ⊆ N ⊆ X, g : N → R is linear,
and g|M = f . We have the partial ordering (N, g) ≤ (N ′.g′) if N ⊆ N ′ and g′|N = g.
If ((Ni, gi))i is a chain in P, then (

⋃
iNi,

⋃
i gi) ∈ P is an upper bound for the chain.

By Zorn’s lemma, there is a maximal element (N, g) ∈ P. We now must have N = X;
otherwise, apply Step 1 to N ⊆ N +Rx1 for some x1 ∈ X \N to contradict the maximality
of N .

Theorem 1.2 (complex Hahn-Banach). Let F = C, let M be a linear subspace of X, and
let p be a sublinear functional on X. If f : M → C is such that |f(x)| ≤ p(x) for all
x ∈M , then there exists some linear F : X → C such that F |M = f and |F | ≤ p.

Proof. Here is the sketch. Treat X as a real vector space. Then g = Re(f) is an R-linear
functional M → R. Extend g via the real Hahn-Banach theorem to get G on all of X. If
G : X → R is R-linear, then F (x) = F (x)− iG(ix) is C-linear. Then ‖F‖ = ‖G‖.

Here is the special case where p is a norm.

Corollary 1.1. Let X be a normed space over F ∈ {R,C}. If M is a linear subspace and
f ∈M∗, then there is an F ∈ X∗ such that F |M = f and ‖F‖ = ‖f‖.

1.3 Corollaries of Hahn-Banach

Corollary 1.2. Let X be a normed space over F, let x1, . . . , xn ∈ X be linearly independent,
and let α1, . . . , αn ∈ F. Then there is some f ∈ X∗ such that f(xi) = αi for all i.

Proof. Define f by f(xi) = αi on span{x1, . . . , xn}. This is automatically bounded since
this is a finite dimensional subspace. Now apply Hahn-Banach.
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Corollary 1.3. Let X be a normed space over F, and let x ∈ X. Then ‖x‖ = max{|f(x)| :
f ∈ X∗, ‖f‖ ≤ 1}.

Proof. (≥): This follows from the definition of the dual norm.
(≤): Apply the previous corollary with x1 = x and α1 = ‖x‖.

Corollary 1.4. Let X be a normed space over F, letM be a non-dense linear subspace, and
let x ∈ X. Then there is an f ∈ X∗ such that f |M = 0, ‖f‖ = 1 and f(x) = dist(x,M).

Proof. Consider the quotient map Q : X → X/M . By Hahn-Banach, there exists an
f0 ∈ (X/M)∗ such that ‖f0‖ = 1 and f0(x + M) = dist(x,M). Let f := f0 ◦ Q. Then
f(y) = f0(y +M) for all y ∈ X.

Corollary 1.5. If X is a normed space and M is a linear subpsace, then

M =
⋂
f∈X∗
f |M=0

ker f.

Proof. (⊆): ker f ⊇M for each element in the intersection, and each ker f is closed.
(⊇): If x ∈ X \ M , then take f from the previous corollary. Then f(x) > 0, so

x /∈
⋂
f ker f .
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