Math 255A' Lecture 5 Notes

Daniel Raban

October 7, 2019

1 The Hahn-Banach Theorem

1.1 Examples of Dual Spaces

Here are examples of concrete descriptions of some dual spaces.

Example 1.1. If (X, Σ, μ) is a measure space, $1 , and <math>p^{-1} + q^{-1} = 1$, then the map $L^q \to (L^p(\mu))^*$ given by $g \mapsto L_g$ is a linear isometry, where $L_g(f) = \int_X fg \, d\mu$.

Example 1.2. If (X, Σ, μ) is σ -finite, then $L^{\infty}(\mu) \mapsto (L^{1}(\mu))^{*}$ given by $g \mapsto L_{g}$ is an isometric isomorphism, where $L_{q}(f) = \int fg d\mu$.

Example 1.3. Let X be a locally compact Hausdorff space, and let M(X) be the set of \mathbb{F} -valued regular¹ Borel measures on X with $\|\mu\|$ equalling the total variation of μ . Then the map $M(X) \to C_0(X)^*$ given by $\mu \mapsto L_{\mu}$ is an isometric isomorphism, where $M_{\mu}(f) = \int_X f d\mu$.

1.2 The Hahn-Banach theorem

Let X be a vector space over \mathbb{F} .

Definition 1.1. A sublinear functional on X is a function $p: X \to \mathbb{R}$ such that

- 1. $p(x+y) \le p(x) + p(y)$
- 2. $p(\alpha y) = \alpha p(y)$ for all $\alpha \in [0, \infty)$.

Example 1.4. Any seminorm is a sublinear functional.

Theorem 1.1 (Hahn-Banach). Let $\mathbb{F} = \mathbb{R}$, let M be a linear subspace of X, and let p be a sublinear functional on X. If $f : M \to \mathbb{R}$ is linear and $f \leq p|_M$, then there is a linear $F : X \to \mathbb{R}$ such that $F|_M = f$ and $F \leq p$.

 $^{^{1}}$ For general locally compact spaces, "regular" can have different meanings. Take it to have the meaning that makes this theorem work.

Proof. Step 1: Assume dim(X/M) = 1. Then there is some $x_0 \in X$ such that $M + \mathbb{R}x_0 = X$. We must find something of the form $F(y + tx_0) = f(y) + t\alpha_0$ for some $\alpha_0 \in \mathbb{R}$ such that $F \leq p$. What must α_0 satisfy? We need $f(y) + t\alpha_0 \leq p(y) + tx_0$ for all $y \in M, t \in \mathbb{R}$.

- If t > 0, divide by t to get $f(y') + \alpha_0 \le p(y' + x_0)$ for all $y' \in M$. That is, we need $\alpha_0 \le \inf_{y' \in M} p(y' + x_0) f(y')$.
- If t < 0, divide by -t to get $f(y') \alpha_0 \le p(y' x_0)$ for all $y' \in M$. That is, we need $\alpha_0 \ge \sup_{y' \in M} f(y') p(y' x_0)$.

It remains to check that for any $y', y'' \in M$, $f(y'') = p(y'' - x_0) \leq p(y' - x_0) - f(y')$ (so such an α_0 exists). We can rearrange this to get $f(y' + y'') \leq p(t' + x_0) + p(y'' - x_0)$. But this is true because

$$f(y+y'') \le p(y'+y'') \le p(y'+x-0) + p(y''-x_0)$$

by the subadditivity of p.

Step 2: The idea is to "iterate" Step 1 to get the general case. Let \mathcal{P} be the collection of pairs (N,g) where N is a linear subspace such that $M \subseteq N \subseteq X, g: N \to \mathbb{R}$ is linear, and $g|_M = f$. We have the partial ordering $(N,g) \leq (N'.g')$ if $N \subseteq N'$ and $g'|_N = g$. If $((N_i, g_i))_i$ is a chain in \mathcal{P} , then $(\bigcup_i N_i, \bigcup_i g_i) \in \mathcal{P}$ is an upper bound for the chain. By Zorn's lemma, there is a maximal element $(N,g) \in \mathcal{P}$. We now must have N = X; otherwise, apply Step 1 to $N \subseteq N + \mathbb{R}x_1$ for some $x_1 \in X \setminus N$ to contradict the maximality of N.

Theorem 1.2 (complex Hahn-Banach). Let $\mathbb{F} = \mathbb{C}$, let M be a linear subspace of X, and let p be a sublinear functional on X. If $f : M \to \mathbb{C}$ is such that $|f(x)| \leq p(x)$ for all $x \in M$, then there exists some linear $F : X \to \mathbb{C}$ such that $F|_M = f$ and $|F| \leq p$.

Proof. Here is the sketch. Treat X as a real vector space. Then $g = \operatorname{Re}(f)$ is an \mathbb{R} -linear functional $M \to \mathbb{R}$. Extend g via the real Hahn-Banach theorem to get G on all of X. If $G: X \to \mathbb{R}$ is \mathbb{R} -linear, then F(x) = F(x) - iG(ix) is \mathbb{C} -linear. Then ||F|| = ||G||. \Box

Here is the special case where p is a norm.

Corollary 1.1. Let X be a normed space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. If M is a linear subspace and $f \in M^*$, then there is an $F \in X^*$ such that $F|_M = f$ and ||F|| = ||f||.

1.3 Corollaries of Hahn-Banach

Corollary 1.2. Let X be a normed space over \mathbb{F} , let $x_1, \ldots, x_n \in X$ be linearly independent, and let $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$. Then there is some $f \in X^*$ such that $f(x_i) = \alpha_i$ for all i.

Proof. Define f by $f(x_i) = \alpha_i$ on span $\{x_1, \ldots, x_n\}$. This is automatically bounded since this is a finite dimensional subspace. Now apply Hahn-Banach.

Corollary 1.3. Let X be a normed space over \mathbb{F} , and let $x \in X$. Then $||x|| = \max\{|f(x)| : f \in X^*, ||f|| \le 1\}$.

Proof. (\geq) : This follows from the definition of the dual norm.

(\leq): Apply the previous corollary with $x_1 = x$ and $\alpha_1 = ||x||$.

Corollary 1.4. Let X be a normed space over \mathbb{F} , let M be a non-dense linear subspace, and let $x \in X$. Then there is an $f \in X^*$ such that $f|_M = 0$, ||f|| = 1 and $f(x) = \operatorname{dist}(x, M)$.

Proof. Consider the quotient map $Q : X \to X/M$. By Hahn-Banach, there exists an $f_0 \in (X/M)^*$ such that $||f_0|| = 1$ and $f_0(x + M) = \text{dist}(x, M)$. Let $f := f_0 \circ Q$. Then $f(y) = f_0(y + M)$ for all $y \in X$.

Corollary 1.5. If X is a normed space and M is a linear subprace, then

$$\overline{M} = \bigcap_{\substack{f \in X^* \\ f|_M = 0}} \ker f.$$

Proof. (\subseteq): ker $f \supseteq M$ for each element in the intersection, and each ker f is closed.

(⊇): If $x \in X \setminus \overline{M}$, then take f from the previous corollary. Then f(x) > 0, so $x \notin \bigcap_f \ker f$. □